Phenol-soluble modulin α4 mediates Staphylococcus aureus-associated vascular leakage by stimulating heparin-binding protein release from neutrophils

نویسندگان

  • Lin li
  • Yaya Pian
  • Shaolong Chen
  • Huaijie Hao
  • Yuling Zheng
  • Li Zhu
  • Bin Xu
  • Keke Liu
  • Min Li
  • Hua Jiang
  • Yongqiang Jiang
چکیده

Vascular leakage frequently occurs in patients with severe Staphylococcus aureus infection. However, the mechanism underlying S. aureus infection-induced vascular leakage remains unclear. Here, we identified the S. aureus virulence factor phenol-soluble modulin (PSM)α4 from the culture supernatant of strain USA300 as a stimulator of heparin-binding protein (HBP) release from polymorphonuclear neutrophils (PMNs) and demonstrated that PSMα4-induced HBP release from PMNs leads to vascular leakage. PSMα4 appeared less cytolytic than PSMα1-3 and was insensitive to lipoproteins; it significantly increased myeloperoxidase and elastase release from PMNs and cell surface CD63 expression in PMNs. PSMα4-induced HBP release required formyl peptide receptor 2 (FPR2) and phosphoinositide 3-kinase (PI3K) and depended on Ca(2+) influx and cytoskeleton rearrangement. Thus, PSMα4 may stimulate HBP release by activating FPR2 and PI3K to initiate PMN degranulation. PSMα4-induced HBP release from PMNs increased endothelial cell monolayer permeability in vitro and induced vascular leakage in mice. This novel function of PSMα4 may contribute to the pathogenesis of S. aureus and may be a potential therapeutic target.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenol-Soluble Modulin α Peptide Toxins from Aggressive Staphylococcus aureus Induce Rapid Formation of Neutrophil Extracellular Traps through a Reactive Oxygen Species-Independent Pathway

Neutrophils have the ability to capture and kill microbes extracellularly through the formation of neutrophil extracellular traps (NETs). These are DNA and protein structures that neutrophils release extracellularly and are believed to function as a defense mechanism against microbes. The classic NET formation process, triggered by, e.g., bacteria, fungi, or by direct stimulation of protein kin...

متن کامل

Novel phenol-soluble modulin derivatives in community-associated methicillin-resistant Staphylococcus aureus identified through imaging mass spectrometry.

Staphylococcus aureus causes a wide range of human disease ranging from localized skin and soft tissue infections to potentially lethal systemic infections. S. aureus has the biosynthetic ability to generate numerous virulence factors that assist in circumventing the innate immune system during disease pathogenesis. Recent studies have uncovered a set of extracellular peptides produced by commu...

متن کامل

Regulatory T Cells Functions and Increase In Vitro Priming of Modulin Peptides Modulate Dendritic Cell Phenol-Soluble Staphylococcus aureus

The major human pathogen Staphylococcus aureus has very efficient strategies to subvert the human immune system. Virulence of the emerging community-associated methicillin-resistant S. aureus depends on phenol-soluble modulin (PSM) peptide toxins, which are known to attract and lyse neutrophils. However, their influences on other immune cells remain elusive. In this study, we analyzed the impac...

متن کامل

Phenol Soluble Modulin (PSM) Variants of Community-Associated Methicillin-Resistant Staphylococcus aureus (MRSA) Captured Using Mass Spectrometry-Based Molecular Networking*□S

Molecular genetic analysis indicates that the problematic human bacterial pathogen methicillin-resistant Staphylococcus aureus possesses more than 2000 open reading frames in its genome. This number of potential gene products, coupled with intrinsic mechanisms of posttranslational modification, endows methicillin-resistant Staphylococcus aureus with a highly complex biochemical repertoire. Rece...

متن کامل

Recognition of Staphylococcus aureus by the innate immune system.

The gram-positive bacterium Staphylococcus aureus is a major pathogen responsible for a variety of diseases ranging from minor skin infections to life-threatening conditions such as sepsis. Cell wall-associated and secreted proteins (e.g., protein A, hemolysins, and phenol-soluble modulin) and cell wall components (e.g., peptidoglycan and alanylated lipoteichoic acid) have been shown to be infl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016